The sum of the solutions of the equation $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to
$9$
$4$
$10$
$12$
If the quadratic equation ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ has $2$ integral roots, then sum of all possible values of $\theta $ in interval $(0, 2\pi )$ is $k\pi $, then $k$ equals
Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$
The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is
The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is
Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.
$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
($1$) $a_{12}=$
$[A]$ $a_{11}-a_{10}$ $[B]$ $a_{11}+a_{10}$ $[C]$ $2 a_{11}+a_{10}$ $[D]$ $a_{11}+2 a_{10}$
($2$) If $a_4=28$, then $p+2 q=$
$[A] 21$ $[B] 14$ $[C] 7$ $[D] 12$
answer the quetion ($1$) and ($2$)